NCERT Class 10th – Chapter 2 Polynomial Solutions – Exercise 2.4

NCERT full solutions  here you can find full detailed solutions for all the questions  with proper format. class 10 maths ncert solutions chapter 2 exercise 2.4

You can see the solution for complete chapter here –

 CHAPTER 2 – POLYNOMIALS – EXERCISE:-2.4

QUE :-Verify that the numbers given alongside of the cubic polynomial below are their zeroes. also verify the                        reltionship between the zeroes and the coeficients in each case .

(i) 2x³+x²-5x+2  :1/2,1,-2

(ii)  x³-4x²+5x-2  :   2,1,1

  SOL :-

(i) 2x³+x²-5x+2  :1/2,1,-2

p(x) = 2x³+x²-5x+2

zeroes for this polynomial are 1/2,1,-2

p(1/2)=2(1/2)³+(1/2)²-5(1/2)+2

=1/4+1/4-5/2+2

=1/2+2-5/2

= 0

p(1)=2(1)³+(1)²-5(1)+2

= 5-5

=0

p(-2)=2(-2)³+(-2)²-5(-2)+2

= -16+4+10+2

=0

therefore , 1/2,1,and-2 are the zeroes of the given polynomial. comparing the given polynomial with ax³+bx²+cx+d,

we obtain a=2, b=1, c=-5 ,d=2

we can take α  =1/2 ,β=1, γ -2

α +β+γ =1/2+1+(-2)=-1/2=-b/a

αβ+βγ+αγ =1/2×1+1(-2)+1/2(-2)=-5/2=c/a

αβγ = 1/2×1×(-2)=(-2)/2=-d/a

therefore , the relationship between the zeroes and the coefficient is verified.

(ii)  x³-4x²+5x-2  :   2,1,1

zeroes for this polynomial are 2,1,1

p(2)=2³-4(2)²+5(2)-2

= 8-16+10-2=0

p(1)=1³-4(1)²+5(1)-2

= 1-4+5-2=0

p(1)=1³-4(1)²+5(1)-2 =0

therefore , 2,1,and1 are the zeroes of the given polynomial. comparing the given polynomial with ax³+bx²+cx+d,

we obtain a=1, b=-4, c=5 ,d=-2

we can take α  =2 ,β=1, γ =1

α +β+γ =2+1+(1)=4=-(-4)/1=-b/a

αβ+βγ+αγ =2×1+1(1)+2(1)=5/1=c/a

αβγ = 2×1×1=2=-(-2)/1=-d/a

therefore , the relationship between the zeroes and the coefficient is verified.

QUE :-2 Find a cubic polynomial with the sum ,sum of the product of its zeroes taken two at a time and the product of its zeroes as 2,-7,-14respectively.

 SOL:-

Let polynomial be ax³+bx²+cx+d and the zeroes be α,β,andγ

it is given that

α +β+γ =2/1=-b/a

αβ+βγ+αγ =-7/1=c/a

αβγ = -14/1=-d/a

if a- 1 b=-2,c=-7 d=14

hence,the polynomial is x³-2x²-7x+14.

QUE:-3  If the zeroes of polynomail , x³-3x²+x+1 are a-b,a,a+b find a and b.

SOL;-

p(x) = x³-3x²+x+1

zeroes are a-b , a,a+b

comparing the given polynomial with px³+qx²+rx+t, we  obtain p=1,q=-3,r=1 ,t=1

sum of zeroes =a-b+a+a+b

-q/p =3a

-(-3)/1=3a

a=1

the zeroes are 1-b ,1,1+b

multipication of zeroes = 1(1-b)(1+b)

-t/p = 1-b²

-1/1=1-b²

b² =1+1

b=±root2

hence , a=1 and b=root2 or -root2

QUE :-4  It two zeroes ofthe polynomial ,x (power)4 -6x³-26x²+138x-35 are 2±root 3 find other zeroes.

 SOL:-

given 2+root 3 and 2-root 3 are zeroesof the given polynomial.

so ,(2+root 3)(2-root 3) is a factor of polynomial .

therefore , [x-(2+root 3)][x-(2-root 3)]=x² +4 – 4x-3

=x² – 4x+1 is a factore of the given polynomial 

for finding the remaining zeroes of the given polynomial , we will find

x² – 4x+1 ) x (power)4 -6x³-26x²+138x-35 (x² -2x -35

x (power)4 -4x³+ x²

    –                  +        –     

-2x³ -27x² +138x -35

-2x³+8x²   -2x

        +      –       +                

-35x²  +140x  -35

-35x²  +140x  -35

      +         –          +    

0

x (power)4 -6x³-26x²+138x-35  = ( x² – 4x+1)(x² -2x -35)

( x² -2x -35) is also a factor of the given 

it can be observed that polynomial (x² -2x -35) =(x-7)(x+5)

therefore , the value of the polynomial is also zero when x-7 =0 or x+5 or x=7 or -5

hence ,7 and -5 are also zeroes of this polynomial.

QUE :-5 If the polynomial x(power4) -6x³ +16x² -25x +10 is dividend by another polynomial , x²-2x+k the remainder                comes out to be comes out to be x+a , find k and a.

SOL:- by division algorithm ,

Dividend = divisor × quotient + remainder

Dividend – remainder = divisor × quotient

x(power4) -6x³ +16x² -25x +10 -x-a =x(power4) -6x³ +16x² -26x +10-a

x(power4) -6x³ +16x² -26x +10-a divisible by x²-2x+k

x²-2x+k ) x(power4) -6x³ +16x² -26x +10-a (x² -4x +(8-k)

x(power4) -2x³ +kx²

   –                +       –     

-4x³ +(16-k) x² -26 x

-4x³  +        8x²   -4kx

          +       –               +       

(8-k)x² -(26-4k)x +10-a

(8-k )x² -(16 -2k) + (8k-k²)

        –             +              –             

(10 +2k)x +(10-a -8k +k² )

it can be observed that    (10 +2k)x +(10-a -8k +k² ) will be 0.

therefore (-10 +2k)  =0 and (10-a -8k +k² )   =0

for (-10 +2k) =0  ,2k=10 and k=5

for (10-a -8k +k² )   =0

10-a-8×5+25 =0

10-a-40+25=0

-5-a =0

therefore ,a=-5

hence , k=5 and a=-5

You can see the solution for complete chapter here –

Tags – ncert maths solution, class 10th maths solution, solution for class 10th, maths solution 10th class chapter 2, chapter 2 solution 10th class maths, ncert mathematics solution 10th class.