NCERT Class 10th – Chapter 2 Polynomial Solutions – Exercise 2.3

NCERT full solutions  here you can find full detailed solutions for all the questions  with proper format. class 10 maths ncert solutions chapter 2 exercise 2.3

You can see the solution for complete chapter here –

EXERCISE:-2.3

 Question: 1  DIVED THE POLYNOMIAL p(x) BY THE POLYNOMIAL g(x) AND FIND THE QUOTIENT AND REMAINDER IN EACH OF THE FOLLOWING:

 (i) p(x) = x³-3x+5x-3         g(x)=x²-2

 (ii) p(x)=x power4-3x²+4x+5     g(x)= x²+1-x 

 (iii) p(x)= x power4 -5x +6      g(x) =2-x²

SOL:-

 (i) p(x) = x³-3x+5x-3         g(x)=x²-2

x²-2 )  x³-3x+5x-3 ( x-3

x³       -2x

      –         +     

-3x²  +7x -3

– 3x²           +6

      +                –     

                   7x-9       

quotient =x-3

remainder =7x-

(ii)  p(x)=x power4-3x²+4x+5     

g(x)= x²+1-x 

x²+1-x  )  x power 4-3x²+4x+5 (x²+ x+1

x power 4        – x³       +x²

      –         +            –    

x³    -4x² +4x+ 5

x³   -x²   +x

          –        +   –      

-3x² +3x+5

-3x²  +3x  -3

           +     –      +     

                               8      

quitient =x²+x-3

remainder =8

 

 

(iii) p(x)= x power4 -5x +6      g(x) =2-x²

2-x²)  x power4 -5x +6  (-x²-2

x power 4    -2x²

      –         +    

2x² -5x+ 6

2x²         -4

          –            +   

                 -5x+10

quitient =x²-2

remainder =-5x+10

QUE:-2  CHECK WHETHER THE FIRST POLYNOMIAL IS A FACTORE OF THE SECOND POLYNOMIAL BY DIVIDING                       THE SECOND POLYNOMIAL BY THE FIRST POLYNOMIAL :

 (i) t²-3, 2tpower(4)+3t³-2t²-9t-12

              (ii) x²+3x +1 , 3xpower(4)+5x³-7x²+2x+2

            (iii) x³-3x+1, xpower(5) -4x³+x²+3x+1

  SOL:-

 (i) t²-3, 2tpower(4)+3t³-2t²-9t-12 

        t²-3=t²+0t-3

     t²+0t-3 )  2tpower(4)+3t³-2t²-9t-12  ( 2t²+3t+4

                     2tpower(4)   -6t²

     –                +     

3t³  +4t²-9t-12

3t³  +ot²  -9t

      –       –      +     

4t²-12

4t²-12

–        +    

                              0     

since the remainder =0,

hence ,   t²-3 is a factor of 2tpower(4)+3t³-2t²-9t-12 .

(ii) x²+3x +1 , 3xpower(4)+5x³-7x²+2x+2

x²+3x +1 )  3xpower(4)+5x³-7x²+2x+2 ( 2t²+3t+4

                     3xpower(4) +9x³ +3x²

–                    –        –       

-4x³  -10x²-2x-2

-4x³  -12x²  -4x

    +        +      +   

2x²+6x+2

2x²+6x+2

                              0     

since the remainder =0,

hence , x²+3x +1 is a factor of 3xpower(4)+5x³-7x²+2x+2 .

(iii) x³-3x+1, xpower(5) -4x³+x²+3x+1

  x³-3x+1 )  xpower(5) -4x³+x²+3x+1 ( x²-1

                    xpower(5) -3x³ +x²

  –                +     –       

-x³      +3x  +1

-x³  +3x    -1

   +      –       +   

                 2       

since the remainder ≠0,

hence , x²+3x +1 is not a factor of xpower(5) -4x³+x²+3x+1 .

QUE:-3OBTAIN ALL OTHER ZEROES OF 3x(POWER4)+6x³-2x²-10x-5,IF TWO OF ITS ZEROES ARE root5/3 AND -root5/3.

SOL:- p(x) = 3x(POWER4)+6x³-2x²-10x-5

since the two zeroes are root5/3 and-root5/3

∴ {x-root5/3}{x+root5/3} = {x²-5/3} is a factor of 3x(POWER4)+6x³-2x²-10x-5

therefore , we divide the given polynomial by x²-5/3

x²+0x-5/3 )3x(POWER4)+6x³-2x²-10x-5(3x² +6x +3

3x(POWER4)+0x³-5x²

   –                    –      +     

6x³ +3x²  -10x -5

6x³           -10x

           –               +         

3x²   -5

3x²   -5

               –         +      

                        0           

we factorize x²+2x+1

=  (x+1)²

therefore , its zero is given by x+1=0 or x=-1

as it has the term  (x+1)² ,therefore, there will be 2 zeroes at x=-1

hence , the zeroes of the given polynomial are  root5/3 ,-root5/3  -1 and -1

QUE:-4ON DIVIDING x³-3x²+x+2 POLYNOMIAL g(x) ,THE QUOTIENT AND REMAINDER WERE x-2 AND REMAINDER WERE x-2 AND -2x+4 , RESPECTIVELY FIND g(x).

SOL:-

p(x)=    x³-3x²+x+2     (DIVIDEND)

g(x) = ?                        (DIVISOR)

QUTIENT=(x- 2)
REMAINDER =(-2x+4)

DIVIDEND=DIVISOR×QUOTIENT +REMAINDER

x³-3x²+x+2=g(x) ×(x- 2) +(-2x+4)

x³-3x²+x+2 +2x-4=g(x) ×(x- 2)

x³-3x²+3x-2 =g(x) ×(x- 2)

g(x) IS QUOTIENT WHEN WE DIVIDE x³-3x²+3x-2 BY(x- 2)

x-2  )x³-3x²+3x-2(x²-x+1

x³ -2x²

    –     +     

-x² +3x -2

-x² +2x

   +    –      

x-2

x-2

        –     +  

∴ g(x) =x²-x+1

QUE :-5 GIVE EXAMPLES OF POLYNOMIAL p(x),q(x),g(x)AND r(x) ,WHICH DIVISION ALGORITAM AND

 (i) deg p(x) =deg q(x)

 (ii) deg q(x)= deg r(x)

(iii) deg r(x) =0

SOL:-

(i) Accordindg to the division algoritham , if p(x) and g(x) are two polynomials with g(x)≠0,then we can find polynomials q(x) and r(x)such that

p(x)=g(x) × q(x) × r(x),

where r(x) = 0 or degree of r(x) <degree of g(x)

degree of a polynomial is the highest power of the variable in the polynomial.

deg p(x)=deg q(x)

degree of quotient will be equal to degree  of dividend when divisor is constant .

let us assume the division of 8x² +6x +2 by 2 .

here ,p(x) = 8x² +6x +2

g(x) = 2

q(x) = 4x² +3x +1 and r(x) =0

degree of p (x) and q(x) is the same i.e.,2.

checking for division algorithm ,p(x)=g(x) × q(x) × r(x)

8x² +6x +2=(2)(4x² +3x +1)+0

thus , the division algorithm is satisfied .

 (ii) deg q(x)= deg r(x)

According to the division algoritham , if p(x) and g(x) are two polynomials with g(x)≠0,then we can find polynomials q(x) and r(x)such that

p(x)=g(x) × q(x) × r(x),

where r(x) = 0 or degree of r(x) <degree of g(x)

degree of a polynomial is the highest power of the variable in the polynomial.

deg p(x)=deg q(x)

degree of quotient will be equal to degree  of dividend when divisor is constant .

let us assume the division of t³  +t  by t²

here , p(x) =t³  +t  g(x) =t² q(x) =t and r(x) =t

degree of q (x) and r(x) is the same

checking for division algorithm ,p(x)=g(x) × q(x) × r(x)

t³  +t =( t²)tt+t t³+t=t³  +t

thus , the division algorithm is satisfied .

(iii) deg r(x) =0

Accordindg to the division algoritham , if p(x) and g(x) are two polynomials with g(x)≠0,then we can find polynomials q(x) and r(x)such that

p(x)=g(x) × q(x) × r(x),

where r(x) = 0 or degree of r(x) <degree of g(x)

degree of a polynomial is the highest power of the variable in the polynomial.

deg p(x)=deg q(x)

degree of quotient will be equal to degree  of dividend when divisor is constant .

degree of remainder will be 0 when remainder comes to a constant.

let us assume the division of x³ +1 by x²

clearly , the degree of r(x) is 0. checking for division algorithm,

p(x)=g(x) × q(x) × r(x)

x³ +1 =(x²)xx+1x³+1=x³ +1

thus , the division algorithm is satisfied.

You can see the solution for complete chapter here –

Tags : class 10th questions,  ncert class 10th chapter2 polynomial  solutions, class 10th maths 2.3 solutions, ncert answers, ncert notes class 10th, class 10th  important questions, 10th class questiosn and answers,